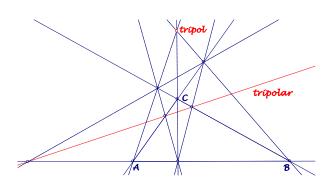
EQF-Note 2013-02-15

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures <u>http://chrisvantienhoven.nl/</u>

Trilinear Poles and Polars wrt the Diagonal Triangles of Quadrangle, Quadrilateral and Quadrigon

The trilinear polar of P (shortened tripolar T_P) wrt a reference triangle ABC is the perspectrix of the Cevian triangle of P and ABC. The trilinear pole of a line L (shortened tripol T_L) is the perspector of ABC and the triangle of the fourth harmonic points on the side lines of ABC wrt the intersection points of L.

Tripolar of P(u:v:w): (vw,wu,uv)Tripol of $L(\lambda, \mu, v)$: $(\mu v:v\lambda:\lambda\mu)$



• The tripol of the Newton Line *QL-L1* wrt *QL-Tr1* is the *QL*-Harmonic center *QL-P13*.

1. Considering the line pencil of a point P(u:v:w), the locus of the tripols is a circumscribed conic of the reference triangle with the equation

wxy + uyz + vzx = 0,

centered in (u(-u+v+w), v(u-v+w), w(u+v-w)).

The polar of *P* wrt this conic is the tripolar of *P*.

On the other hand: The tripolars of points on a circumscribed conic of the reference triangle have a common point. For example the tripolars of points on the circumcircle concur in the Lemoine point X(6).

1.1 Taking *QL*-points wrt *QL-Tr1*, we get circumscribed conics of *QL-Tr1*, for example:

• *QL-P8* gives the Steiner ellipse with the tripols of all lines through *QL-P8*, e.g. *QL-L7*, *QL-L8*.

• The point at infinity of *QL-L1* gives a circumscribed conic through *QL-P8*, *QL-P13*, *QL-P24* with the tripols of all parallels to *QL-L1*:

$$(l^2 - m^2)xy + (m^2 - n^2)yz + (n^2 - l^2)zx = 0$$

1.2 Taking *QA*-points wrt *QA*-*Tr1*, we get circumscribed conics of *QA*-*Tr1*, for example:

- *QA-P16* gives the Nine-point Conic *QA-Co1*.
- The tripolars of *QA-P1*, *QA-P16*, *QA-P17*, *QA-P19*, *QA-P20* (all points of *QA-Co5*) have a common point (not listened in *EQF*):

$$\begin{array}{c}(p^2(q^2-r^2)(-p^2+q^2+r^2),q^2(r^2-p^2)(p^2-q^2+r^2),\\ r^2(p^2-q^2)(p^2+q^2-r^2)).\end{array}$$

2. Considering points on a Line $L(\lambda, \mu, \nu)$, the tripolars will envelope an inscribed conic of the reference triangle with the equation

$$\lambda^2 x^2 + \mu^2 y^2 + \nu^2 z^2 - 2(\lambda \mu xy + \mu \nu yz + \nu \lambda zx) = 0$$

centered in $(\mu + \nu, \nu + \lambda, \lambda + \mu)$.
The pole of *L* wrt this conic is the tripol of *L*.

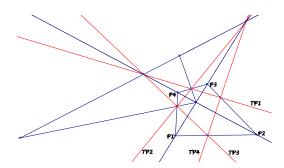
On the other hand: The tripols of tangents at an inscribed conic of the reference triangle are collinear. The tripols of tangents at the incircle lie on the tripolar of the Gergonne Point X(7).

2.1 Taking *QA*-lines wrt *QA*-*Tr1*, we get *QA*-*Tr1* inscribed conics (no examples).

2.2 Taking *QL*-lines wrt *QL-Tr1*, we get *QL-Tr1* inscribed conics (no examples).

3. Of special interest are the tripolars of the vertices of a quadrangle wrt QA-Tr1 and the tripols of the side lines of a quadrilateral wrt QL-Tr1.

3.1. The tripolars T_{Pi} of the vertices of a quadrangle give a quadrilateral.

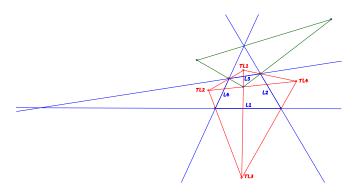


• The *QL*-Diagonal Triangle of this quadrilateral is the *QA*-Diagonal Triangle of the reference quadrangle (evidently with the same Euler configuration).

• Another correspondence: *QL-P13* of this quadrilateral is *QA-P16* of the reference quadrangle.

3.2 The tripols T_{Li} of the side lines of a quadrilateral give a quadrangle.

- The *QA*-Diagonal Triangle of this quadrangle is the *QL*-Diagonal Triangle of the reference quadrilateral (evidently with the same Euler configuration).
- Another correspondence: *QA-P16* of this quadrangle is *QL-P13* of the reference quadrilateral (see above).



4. The tripols of the side lines of a quadrilateral wrt QL-Tr1 can be taken for fixpoints of an isoconjugation with reference triangle QL-Tr1 (see EQF-Note 2013-01-01):

 $(x: y: z) \rightarrow (m^2 n^2 yz: n^2 l^2 zx: l^2 m^2 xy).$

- This isoconjugation swaps *QL-P8* and *QL-P13*.
- This isoconjugation transforms lines $L(\lambda, \mu, \nu)$ into *QL*-*Tr1* circumscribed conics with equation:

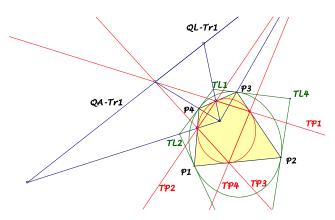
 $m^2 n^2 \lambda yz + n^2 l^2 \mu zx + l^2 m^2 \nu xy = 0.$

- Otherwise: Taking the isoconjugate of the tripol of the line $L(\lambda, \mu, \nu)$, the line pencil of this point will give with its tripols the same conic.
- For example: The isoconjugation transforms *QL-L1* in the Steiner circumscribed ellipse; the points of this conic have tripolars through *QL-P8* (see above).
- Another example (see EQF-Note 2013-01-01): This isoconjugation transforms the line *QL-P8.QL-P13* in a *QL-Tr1* circumscribed conic through the points *QL-P8, Ql-P13, QL-P24*; the points of this conic have tripolars parallel to *QL-L1*.

The tripolars of the vertices of a quadrangle wrt QA-Tr1 can be taken for fixlines of an "isoconjugation for lines" with reference triangle QA-Tr1, but no mentionable examples can be found.

5. For a quadrigon there is a first quadrigon $T_{L1}T_{L2}T_{L3}T_{L4}$ of the tripols of the side lines wrt *QL-Tr1* and a second quadrigon $T_{P1}T_{P2}T_{P3}T_{P4}$ of the tripolars of the vertices wrt *QA-Tr1*.

- The T_L and the T_P -quadrigon have the same QA- and QL-Diagonal Triangle, that are the QL- and the QA-Diagonal Triangle of the reference quadrigon.
- The vertices of the *TL*-quadrigon are the intersections of the tangents of *QG-Co2* in the vertices of the reference quadrigon.
- The vertices of the *TP*-quadrigon are the touch points of *QG-Co1* and the side lines of the reference quadrigon.



Eckart Schmidt <u>http://eckartschmidt.de</u> eckart_schmidt@t-online.de