EQF-Note 2013-04-12

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures <u>http://chrisvantienhoven.nl/</u>

QL-P5, QL-P12, QL-P20, QL-P22

For quadrilaterals with the same Inscribed Parabola QL-Co1 and the same QL-Diagonal Triangle QL-Tr1 the loci for the points above are lines with a common point. This is the reason for the following research. – Reference triangle for barycentric calculation is QL-Tr1.

The Points

The four points above lie collinear on the Newton line *QL-L1* with rational distance ratios:

*P*5.*P*12: *P*12.*P*22: *P*22.*P*20 = 2:1:3.

These are the ratios of the Euler line. Background: Take the Euler lines of the triangle components, choose on each Euler line the same special point X and draw a parallel to the corresponding sideline of the quadrilateral, then the constructed quadrilateral is homothetic to the reference quadrilateral with center Y.

The Lines

We consider the pencil of quadrilaterals with the same QL-Diagonal Triangle QL-Tr1 and the same Inscribed Parabola QL-Co1. The inscribed parabola has the equation:

$$\frac{x^2}{m^2 - n^2} + \frac{y^2}{n^2 - l^2} + \frac{z^2}{l^2 - m^2} = 0$$

For a shorter description the point at infinity of the parabola shall be

 $(u:v:w) = (m^2 - n^2:n^2 - l^2:l^2 - m^2)$ with u+v+w=0. With $l = \sqrt{m^2 + w}$ and $n = \sqrt{m^2 - u}$ we have a parameter *m* for the coefficients of the defining lines of the quadrilateral.

The loci of the considered points are lines with the equations:

QL-P5:
$$\sum_{cycl} (a^4 vw + b^4 wu + c^4 uv + 4a^2 S_A vw) x = 0$$

This line through *QL-P5* is orthogonal to *QL-P1.QL-P9*.

QL-P12: $\sum_{cycl} vwx = 0$

This line is the polar of *QL-P8* wrt the parabola.

QL-P20: $\sum_{cycl} (b^2 w + c^2 v)^2 x = 0$

Construction of this line: a parallel to QL-L1 through QL-P10 (QL-DT-orthocenter), intersection with the parabola, tangent at the parabola, a parallel through QL-P20.

QL-P22:
$$\sum_{cycl} (4S^2vw + (-S_Au + S_Bv + S_Cw)^2)x = 0$$

Construction of this line: a parallel to *QL-L1* through *QL-P11* (*QL-DT*-nine-point center), intersection with the parabola, tangent at the parabola, a parallel through *QL-P22*.

Within the meaning of the *X*-*Y*-list above the last two constructions can be generalized:

The locus of a point P on QL-L1, dividing QL-P5.QL-P20 in the ratio κ , can be constructed as follows: a parallel to QL-L1 through a point, dividing QL-P9.QL-P10 in the same ratio κ , intersection with the parabola, tangent at the parabola, a parallel through P.

Equation of this line: $\sum_{cycl} (-a^4 vw + b^4 wu + c^4 uv + 2a^2(b^2 + c^2)vw + 2(c^2 v + b^2 w)^2 \kappa)x) = 0$

All these lines have a common point.

For quadrilaterals with the same inscribed parabola and the same *QL*-diagonal triangle the loci for the points *QL-P5*, *QL-P12*, *QL-P20*, *QL-P22* are lines with a common point.

This common point has the coordinates:

 $(u(v(a^{2}w+c^{2}u)^{2}-w(a^{2}v+b^{2}u)^{2})$: $(v(w(b^{2}u+a^{2}v)^{2}-u(b^{2}w+c^{2}v)^{2})$: $(w(u(c^{2}v+a^{2}w)^{2}-v(c^{2}u+a^{2}w)^{2})).$

The polar of this point wrt the inscribed parabola is a line through QL-P8. The direction of the polar is orthogonal to a line through QL-P10 and a point, which is the intersection of QL-L2 and a perpendicular line to QL-L7 through QL-P3.

- Unfortunately no further properties can be given. -

A special Case

Taking three lines for a reference triangle and a fourth line parallel to the Euler line of the reference triangle, then we get a quadrilateral, where the four considered points coincide.

For quadrilaterals with sidelines parallel to the Euler lines of their triangle components holds QL-P5 = QL-P12 = QL-P20 = QL-P22.

There are four quadrilaterals of this type among those with the same inscribed parabola and the same QL-diagonal triangle, taking lines

$$(\pm\sqrt{3c^4v^2+2(3S_A^2+S^2)vw+3b^4w^2}, \\ \pm\sqrt{3a^4w^2+2(3S_B^2+S^2)wu+3c^4u^2}, \\ \pm\sqrt{3b^4u^2+2(3S_C^2+S^2)uv+3a^4v^2}).$$

for defining the quadrilateral.

Final Remark

Among the quadrilaterals of the considered pencil there are four further collinear points, whose loci are lines with a common point. The common point is a point at infinity, so the lines are parallel. The first one is already mentioned.

QL-P12:
$$\sum_{cycl} vwx = 0$$

This line is the polar of QL-P8 wrt the parabola
Polar distance from QL-P8:

$$d = \frac{S(uv + vw + wu)}{3\sqrt{S_A u^2 (v - w)^2 + S_B v^2 (w - u)^2 + S_C w^2 (u - v)^2}}$$

QL-P14:
$$\sum_{cycl} (u^2 - 10vw) x = 0$$

Parallel line with distance 4/3d from *QL-P8*.

QL-P15:
$$\sum_{cycl} (u^2 + 8vw)x = 0$$
Parallel line with di

Parallel line with distance 2/3d from *QL-P8*.

QL-P18:
$$\sum_{cycl} (v - w)^2 x = 0$$

Parallel line with distance 2d from *QL-P8*.

Eckart Schmidt <u>http://eckartschmidt.de</u> eckart_schmidt@t-online.de