EQF-Note 2014-01-31

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures http://chrisvantienhoven.nl/

Cubics related to Lines

For lines a special construction in the QLenvironment gives a cubic through the Miquel Point QL-P1, invariant wrt the Clawson-Schmidt Conjugate QL-Tf1. For example: The Newton Line QL-L1 gives the QL-Quasi Isogonal Cubic QL-Cu1. – The relationships are only CABRIcontrolled.

The Construction

We consider a reference quadrilateral with the lines L_1 , L_2 , L_3 , L_4 and a further line L. For the construction of a cubic for the line L we need (see *EQF*, *QL-Tf1*) the Clawson-Schmidt Conjugate (*CSC*) and its fixed points F_1 and F_2 , the Schmidt Circle, the 1st and 2nd Steiner Axis and the Miquel Point *QL-P1* of the quadrilateral.

For variable points X on the line L the intersections of the angle bisector of $\angle F_1 X F_2$ and its CSC-image (a circle through F) are points of the cubic.

Properties

Let *S* be the intersection of the line *L* and the 1^{st} Steiner Axis and *S** its reflection in the Schmidt Circle.

- 1. The cubic contains the Miquel Point *QL-P1*.
- 2. The cubic is invariant wrt the Clawson-Schmidt Conjugate *QL-Tf1*.

- 3. The cubic is unipartite, if *S* lies inside F_1F_2 ; the cubic is bipartite, if *S* lies outside F_1F_2 .
- 4. The asymptote is a parallel to the line L through the reflection of the Miquel Point in the line L.
- 5. A parallel to the line L through the Miquel point, reflected in the 1st Steiner Axis gives the tangent to the cubic in the Miquel Point.

- 6. The tangent in the Miquel Point and the asymptote intersect on the cubic.
- 7. A parallel to the line L through the Miquel Point and a perpendicular to L through S^* intersect on the cubic.
- 8. The intersections R_1 and R_2 of the cubic and the 2nd Steiner Line lie on a circle through F_1 and F_2 round the intersection of the line L and the 2nd Steiner Line.

- 9. The cubic is anallagmatic, invariant under reflections in circles round R_1 or R_2 through F_1 and F_2 .
- 10. If the cubic is unipartite, there is a circle perpendicular to the Schmidt Circle and centered in S^* , containing the intersections of the cubic and the Schmidt Circle and the intersections of the cubic and the line *L*.

11. If the cubic is bipartite, there is a circle perpendicular to the Schmidt Circle and centered in *S*, containing the

intersections of the cubic and the 1st Steiner Axis (without *QL-P1*) and the intersections T_1 and T_2 of the cubic and the perpendicular to *L* through *S** (without the point out of 7).

- 12. There are alternative constructions of the cubic: If S is inside F_1F_2 , circles round variable points X on L and perpendicular to the circle out of 10 cut the connections of X and the Miquel Point in points of the cubic. If S is outside F_1F_2 , circles round variable points X on L through T_1 and T_2 out of 11 cut the connections of X and the Miquel Point in points of the cubic.
- 13. For the 1st Steiner Axis the cubic degenerates to the Schmidt Circle and the 1st Steiner Line.
- 14. For the Newton Line *QL-L1* the cubic is the *QL*-Quasi Isogonal Cubic *QL-Cu1*.
- 15. For lines *L* through one of the fixed points F_i , the cubic is a strophoid of the line *L* with the pole *QL-P1* and the fixed point F_i . That means, that the intersections of circles through F_i round variable points *X* on the line *L* and the connections of *X* with the Miquel Point generate the cubic.

16. For lines *L* through the Miquel Point the cubic is symmetric wrt QL-P1, cutting the 2nd Steiner Line on the Schmidt Circle.

The Cubic for Quadrigons

Here are some remarks for quadrigons, considering the Miquel Triangle $M_1M_2M_3$ (*QA-Tr2*) with Miquel Point M_1 .

Cubic related to M_2M_3

- For the sideline M_2M_3 of the Miquel Triangle we get a circumcubic of the Miquel Triangle.
- This cubic is the locus for points, whose Clawson-Schmidt Conjugate *QL-Tfl* is the isogonal conjugate wrt the Miquel Triangle.

- M_1M_2 and M_1M_3 are tangent to the cubic.
- For the Miquel Point the tangent to the cubic (see 5) is also the tangent to the circumcircle of the Miquel Triangle.

Cubic related to QG-P7.QG-P9

• This cubic is the locus for points, whose distance products wrt opposite vertices are equal (see message 414).

Eckart Schmidt <u>http://eckartschmidt.de</u> eckart_schmidt@t-online.de