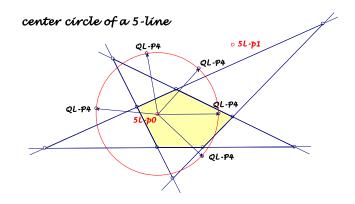
EQF-Note 2014-12-10

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures http://www.chrisvantienhoven.nl/

Morley Points for n-Lines

Morley tried, to generalise the triangle orthocenter for n-lines. In his paper "Orthocentric Properties of the Plane n-Line"(1902) we find ambitious analytic calculations for special points and circles, but no explicit constructions. Here is a summary of results out of a discussion in QFG with Bernard Keizer and Chris van Tienhoven.



Center Circle and Morley Point p_{θ}

Beginning with a 3-line we have the circumcircle and its center as Morley point 3L- p_0 . For a 4-line we get – omitting one line – four concyclic 3L- p_0 . The corresponding circle will be the center circle of the 4-line – that is the Miquel Circle QL-Ci3 – and its midpoint 4L- $p_0 = QL$ -P4.

In this way we get a recursive definition for the Morley point nL- p_0 as center of the *n* concyclic (n-1)L- p_0 of the n-line, omitting one line.

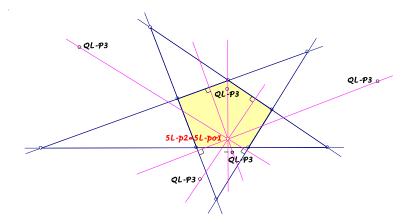
Morley point *p*¹

Adding the vectors with origin nL- p_0 and extremities (n-1)L- p_0 we get the Morley point nL- p_1 . For a 3-line 3L- p_1 is the orthocenter and for a 4-line we find 4L- $p_1 = QL$ -P3.

Morley point *p*²

We give a recursive definition: Let nL-px be the centroid of the n points (n-1)L- p_1 and divide nL- p_1 .nL-px in the ratio -n/(n-2), then you get nL- p_2 . For a 3-line let 3L- p_2 be the orthocenter. For a 4-line we get 4L- p_2 as reflection of QL-P3 in QL-P2. For a 5-

line $5L-p_2$ is the common point of the perpendiculars through $4L-p_1 = QL-P3$ wrt the omitting line. For a 6-line $6L-p_2$ is the common point of the perpendicular bisectors of $5L-p_1.5L-p_2$.

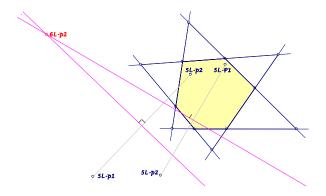


Morley points *p*_i

It seems, that the following recursive definition holds for nL- p_{i+1} : Let nL-px be the centroid of the n (n-1)L- p_i and divide nL- $p_i.nL$ -px in the ratio -n/(n-i-1).

This can be controlled with Morley's theorem 5, which says, that nL- p_i has distances with a fixed ratio to (n-1)L- p_i and (n-1)L- p_{i-1} of the included (n-1)-lines.

As further control Morley mentioned in a remark to theorem 5 for an even number of lines: 2nL- p_{n-1} is equidistant of (2n-1)L- p_{n-1} and (2n-1)L- p_{n-2} .



Morley's 1^{st} Orthocenter p_{o1}

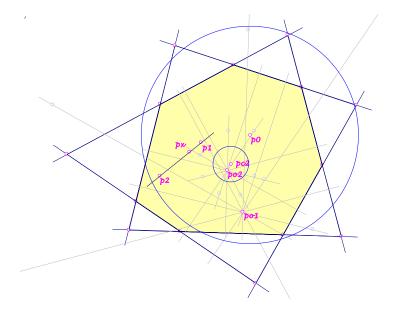
Morley's 1st orthocenter is only defined for odd *n*, beginning with n=5. Morley describes this point $nL-p_{o1}$ as common point of the perpendiculars of $(n-1)L-p_2$ wrt the omitting line.

For n=5 holds $5L-p_{o1} = 5L-p2$, but for n=7 these are two different points!

For even n the first orthocenters (n-1)L- p_{o1} are collinear on the so called "directrix".

Morley's 2^{nd} Circle Center p_{c2} and 2^{nd} Orthocenter p_{o2}

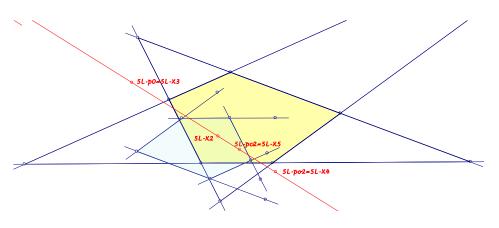
The 1st circle will be the center circle. For a 3-line Morley's 2nd circle is the nine-point circle with center $X5 = 3L \cdot p_{c2}$. For a nline the perpendicular lines through $(n-1)L \cdot p_{c2}$ wrt the omitted line will coincide in Morley's 2nd orthocenter $nL \cdot p_{o2}$. This point – in Morley's paper h – is the external center of similitude for the 1st and 2nd circle (theorem 10). Then the center of the 2nd circle divides $nL \cdot p_{0.}nL \cdot p_{o2}$ in the ratio (n-2):1. The radius of the 2nd circle is 1/(n-1) of the radius of the 1st circle (theorem 9). For a 4-line holds $4L \cdot p_{o2} = QL \cdot P2$ and $4L \cdot p_{c2}$ divides $QL \cdot P2. QL \cdot P4$ with ratio 1:2.



p0 = 7L-Morley's point p0 p1 = 7L-Morley's point p1 p2 = 7L-Morley's point p2 px = centroid of the 6L-p1 po1 = 7L-1st orthocenter (perpendiculars of 6L-p2) po2 = 7L-2nd orthocenter (perpendiculars of 6L-pc2) pc2 = 7L-2nd circle center

nL-Quasi Euler Line

Morley gave a generalisation of the circumcenter and the orthocenter of a triangle, here is proposed a generalisation of the Euler line:



Let be: $nL-X3 = nL-p_0$ the midpoint of the center circle, $nL-X4 = nL-p_{o2}$ the 2nd orthocenter, $nL-X5 = nL-p_{c2}$ the 2nd circle center.

For n=3 holds 3L-Xi = Xi (see *ETC*), for n=4 holds: 4L-X3 = QL-P4, 4L-X4 = QL-P2, 4L-X5 divides QL-P4.QL-P2 in the ratio 2:1.

Generalisation: $\frac{nL - X3.nL - X5}{nL - X5.nL - X4} = \frac{n-2}{1}$

Now let nL-X2 be the "nL-quasi-centroid", which is the homothetic center of the reference n-line and the n-line of the parallels to L_i through (n-1)L-X5.

For n=3 holds 3L-X2 = X2, for n=4 holds 4L-X2 = QL-P22.

Generalisation: $\frac{nL - X3.nL - X2}{nL - X2.nL - X4} = \frac{n-2}{2}$

Eckart Schmidt http://eckartschmidt.de eckart_schmidt@t-online.de