EQF-Note 2015-01-25

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures http://www.chrisvantienhoven.nl/

Basic Elements of 6-Line Geometry

Background for this excursion in 6L-geometry is Morley's paper "On the geometry of the plane nline" wrt center-circles, Clifford's chain and penosculants of the limaçon. There remains the guess, that these results can be generalized for 2nlines.

Nominations

We shall have a look on the following elements, which are explained in *QFG* message 937 and 922:

center-circles:	<i>nL-cc</i> and <i>nP-cc</i> ,
midpoint center circles:	nL-P2 and nP-P2,
intersection of (<i>n</i> -1)-center-circles:	nL-P3 and nP-P3,
inverse of <i>nL-P3/nP-P3</i>	
wrt <i>nL-cc/nP-cc</i> :	nL-P1 and nP-P1
Clifford circles (<i>n</i> odd):	<i>nL-Cc and nP-Cc</i> ,
Clifford points (<i>n</i> even):	<i>nL-Cp</i> and <i>nP-Cp</i> .

The *n* penosculants of an *n*-line are the center-circles of n-1 of *n* lines. Their midpoints lie on the center-circle of the *n*-line and their common point is *nL-P3*. Morley considers center-circles and Clifford points / circles also for penosculants.

6L-cc, 6L-P1, 6L-P2, 6L-P3, 6L-Cp

Limaçon of a 6-line

Penosculants are circles centered on a fixed circle through a fixed point, they envelope a limaçon. The center-circles 5L-cc for 5 of 6 lines are penosculants, their envelope is the limaçon of the 6-line.

- The circle of inversion for the limaçon is centered in *6L*-*P1*, containing *6L-P3*.
- The vertices of the limaçon are the reflections of *6L-P3* in the intersections of *6L-P1.6L-P2* and *6L-cc*.

6P-cc, 6P-P1, 6P-P2, 6P-P3, 6P-Cp

- The inverse of 6P-P3 wrt 6P-cc is 6L-P1 = 6P-P1.
- *6L-P2.6P-P2* is parallel *6L-P3.6P-P3*.
- *6L-P3.6P-Cp* is parallel *6L-P2.6P-P3*.
- The centers of the Clifford circles 5P-Cc are concyclic on a circle round 6P-P3 so that 6P-P1 and 6P-Cp are inverses.

6L-CSC-Involution

In QFG message 922 is described an analogon to the CSC transformation QL-Tf1 for quadrilaterals. This involution can be generalized for 2n-lines.

- The 6L-CSC-involution has the center 6L-P1 = 6P-P1 and swaps 6L-P3 and 6P-Cp.
- The *6L-CSC*-involution maps the *5L-cc* to the corresponding *5P-Cc*.
- The penosculant-configurations of the *5L-cc* and the *5P-Cc* for a 6-line give two limaçons, one *6L-CSC*-image of the other.

Further Involutions

The point 6L-P1 = 6P-P1 can be considered as center of different involutions. Some examples:

...partners: $6L-P2 \leftrightarrow 6L-P3$: $6L-cc \leftrightarrow 6L-cc$, ...partners: $6P-P2 \leftrightarrow 6P-P3$: $6P-cc \leftrightarrow 6P-cc$, ... partners: $6L-P2 \leftrightarrow 6P-P3$ or $6L-P3 \leftrightarrow 6P-P2$: $5L-P2 \leftrightarrow corresponding 5P-P2 (6L-cc \leftrightarrow 6P-cc)$, ...partners: $6L-P3 \leftrightarrow 6P-P3$: $6L-P2 \leftrightarrow 6P-Cp$, $5L-P2 \leftrightarrow center of the corresponding 5P-Cc$.

> Eckart Schmidt <u>http://eckartschmidt.de</u> eckart_schmidt@t-online.de