EQF-Note 2015-07-22

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures http://www.chrisvantienhoven.nl/

Pivotal CSC-Cubics for a Quadrilateral

Well-known are "pivotal isocubics", defined wrt a triangle, an isoconjugation and a pivot [1]. Here an analogon is considered wrt a quadrilateral, the CSC-transformation (QL-Tf1) and a pivot. General properties are presented, but only CABRI-controlled.

A pivotal *CSC*-cubic of a quadrilateral shall be the locus for intersections of lines L through a pivot point P and their *CSC*-circles L^* .

- A pivotal *CSC*-cubic degenerates for a pivot *P* on the Steiner Axes.
- A pivotal *CSC*-cubic with pivot *P* contains the following points:
 - ... the Miquel Point *QL-P1*,
 - ... the CSC-fixed points QL-2P3,
 - ... the pivot P and its CSC-partner P*,

... the intersections of the Schmidt Circle and a perpendicular line wrt the 1^{st} Steiner Axis through *P*.

- A pivotal *CSC*-cubic with pivot *P* is the locus for the intersections of circles through *QL-P1*, centered on the bisector of *P**.*QL-P1*, and their *CSC*-lines.
- A pivotal CSC-cubic is CSC-invariant. CSC-partners are collinear with the pivot.
- The asymptote is a parallel to *P.QL-P1* through the reflection of *P** in *P.QL-P1*.

- Tangents at the cubic in the *CSC*-fixed points *QL-2P3* intersect in the pivot point *P*.
- The tangent in *P* at the cubic is *PP**.
- The tangent in *P** at the cubic is the tangent in *P** at the circumcircle of *P*, *P** and *QL-P1*.
- The intersection of the cubic and its asymptote is the intersection with the tangent at *P**.
- A pivotal CSC-cubic is an anallagmatic curve.

The cubic is invariant wrt two inversions. The inversion circles can be constructed as follows:

... L_1 : angle bisector at P^* wrt P, QL-P1,

- ... L_2 : perpendicular line wrt L_1 through P^* ,
- \dots *M* : intersection of L_2 and *P*.*QL*-*P1*,
- ... Ci : inversion circle round M wrt P and QL-P1,
- \dots M_i : intersections of Ci and L_2 .

Circles round M_i through the intersections of L_1 and C_i are inversion circles for the cubic. The tangents in M_i are parallel to the asymptote, that means parallel to *P.QL-P1*.

As anallagmatic curve the cubic is twice the envelope of circles, centered on a parabola and orthogonal to one inversion circle. The parabolas have the same focus in P^* and as directrices the tangents in M_1 and M_2 .

Final example:

Taking for pivot the CSC-image of the reflection of QL-P1 in QL-L1, the cubic is the locus for intersections of circles through QL-P1 and centered on QL-L1 with their CSC-lines. This cubic has intersections with the QL-Quasi Isogonal Cubic QL-Cu1 on the angle bisectors of the Steiner Axes.

QL-P1 is one intersection of the here discussed cubic and QL-Cu1, but there are further three pairs of intersections, not always real. They can be constructed as follows:

- ... P : CSC-image of the reflection of QL-P1 in QL-L1,
- $\ldots L_1, L_2$: angle bisectors of the Steiner Axes,
- \dots *L* : parallel to *QL*-*L1* through *P*,
- $\ldots X_i$: intersections $L \cap L_i$,
- ... Y_i : intersections $L_i \cap QL$ -L1,
- ... C_i : inversion circles round Y_i wrt X_i and *QL-P1* (*CSC*-partners),
- ... $C_i \cap L_i$: intersections of the cubics (not always real),
- ... $C_1 \cap C_2$: intersections of the cubics, if *QL-Cu1* is bipartite.

The first four intersections $(C_i \cap L_i)$ lie in pairs on äquidistant parallels wrt *QL-L1*. The six intersections of the cubics lie by four on the circles C_i and in pairs of *CSC*-partners on lines through *P*.

References:

[1] Jean-Pierre Ehrmann and Bernard Gibert: Special Isocubics in the Triangle Plane.

Eckart Schmidt <u>http://eckartschmidt.de</u> <u>eckart_schmidt@t-online.de</u>