EQF-Note 2015-12-03

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures <u>http://www.chrisvantienhoven.nl/</u>

A Third Quartic for a Quadrigon

In QFG-messages 362 and 363 two circumquartics of a quadrigon are described. Here is the geometry of a third quartic, related to a conic wrt CSC-partners on its tangents. This quartic is anallagmatic and invariant wrt several transformations.

Preliminary

The CSC-partners on tangents of a given conic give a quartic:

- For a *QL*-conic, tangent to the Steiner axes, the quartic is unipartite.
- For a *QL*-conic, tangent ...
 ... to the Steiner axes
 ... and the Newton line *QL-L1*,
 the quartic is a *P*-quartic (see #1365 attached).
- For a *QG*-conic, tangent ...
 - ... to the Steiner axes
 - ... and the diagonals,

the quartic is a *QG*-circumquartic.

- For a *QG*-conic, tangent ...
 - ... to the Steiner axes
 - ... and the diagonals
 - ... and the Newton line *QL-L1*,
 - there is a special QG-circumquartic.

Here only the last quartic – shortened Qu – shall be treated, related to the special conic – shortened Co.

The Quartic Qu

- The quartic Qu is an unipartite circumquartic of the quadrigon.
- The quartic *Qu* contains ...
 - ... the CSC-fixed points QL-2P3
 - ... and the points QL-2P2 on the cubic QL-Cu1.
- If there are conic-points, whose *CSC*-partner lies on its tangent, the conic *Co* contacts the quartic *Qu* in these points.
- The quartic Qu is invariant wrt the *CSC*-transformation $X \rightarrow X^*$ (evident).

Beside the *CSC*-transformation $X \to X^*$, there is a *QG*-transformation $X \to X^{\wedge}$, described in #362: The image X^{\wedge} is the second intersection of the two circles through X and opposite *QG*-vertices.

• The quartic Qu is invariant wrt the QG-transformation $X \rightarrow X^{\wedge}$.

The Image Points, X^* , X^{\wedge} , $X^{* \wedge} = X^{\wedge *}$

The geometry of the four points X, X*, X^, X*, X^* , $X^{**} = X^*$ is worth to be mentioned:

For points X on the quartic Qu ...
 ... XX[^] and X*X*[^] intersect on a line L₁ through QG-P16 of the reference quadrigon,
 ... XX* and X[^]X* intersect on a second line L₂.

- 1. Consider the quadrigons *X*.*X*[^].*X*^{*}.*X*^{**}.
- These quadrigons have the same Miquel point *QL-P1* as the reference quadrigon.
- The points QG-P16 of these quadrigons lie on the line L_1 collinear with QG-P16 of the reference quadrigon.

- 2. Consider the quadrigons *X*.*X**.*X*^.*X*^*:
- These quadrigons have the same Miquel point in $P = CSC(L_1 \cap L_2).$
- The points *QG-P16* of these quadrigons lie on the line L_2 .
- 3. Consider the quadrigons *X*.*X**.*X**^.*X*^.:
- These quadrigons have the same Miquel point in $P^* = L_1 \cap L_2$.
- The points QG-P16 of these quadrigons lie on a circle, which is the CSC-image of the line L_2 .

The Point $P = CSC(L_1 \cap L_2)$

The point P has a special geometry wrt the defining conic Co and the quartic Qu:

• *P* is a point on the quadrigon circle *QG-Ci4*.

This circle contains the diagonal crosspoint QG-P1 and the diagonal midpoints on the Newton line QL-L1.

• *P* is a point on the circle round the center of the conic *Co* through the Miquel point *QL-P1*.

This circle is the locus of points with orthogonal tangents to the conic *Co*. The 2^{nd} intersection with *QG-Ci4* is a Plücker point for the quadrilateral of the Steiner axes and the diagonals.

- The quartic is invariant wrt a *CSC*-analog transformation $X \rightarrow X'$, centered in *P*, which swaps *P** and *QL-P1*.
- The quartic Qu contains the fixed points of $X \rightarrow X'$.
- For points on the quartic Qu the transformation $X \to X'$ is the same as $X \to X^{\wedge}$.
- The quartic is invariant wrt a *CSC*-analog transformation $X \rightarrow X^{\prime\prime}$, centered in *P**, which swaps *P* and *QL-P1*.
- For points on the quartic Qu the transformation $X \to X^{\prime\prime}$ is the same as $X \to X^{\wedge*}$.

The transformations $X \to X^*$, $X \to X'$, $X \to X''$ are the *CSC*analog transformations of the triangle *QL-P1.P.P**, centered in a vertex swapping the other two vertices.

• The quartic *Qu* is anallagmatic.

Let S_i be the *CSC*-fixed points *QL*-2*P3* and T_i the fixed points of $X \rightarrow X'$, then the centers of inversion are $S_1T_1 \cap S_2T_2$ and $S_1T_2 \cap S_2T_1$.

• The quartic is a *P*-quartic (see #1365 attached).

In this way the defining conic *Co* is tangent to the Newton line of the reference quadrigon and inscribed the cyclic quadrigon of the axes of $X \rightarrow X^*$ and $X \rightarrow X'$.

Eckart Schmidt <u>http://eckartschmidt.de</u> eckart_schmidt@t-online.de