EQF-Note 2016-04-15

Background for these notes is:
Chris van Tienhoven: Encyclopedia of Quadri-Figures
http://www.chrisvantienhoven.nl/

QA-Reproduction with QA-Tr1 and QA-Tr2

Scimemi researched in his work "Central Points of the Complete Quadrangle" (EQF-Ref.[36]) the question, how to reconstruct a quadrangle with four points. Here the question is modified in the sense, how to reconstruct a quadrangle with the diagonal triangle and the Miquel triangle.

Preliminary remarks (see EQF):

- The diagonal triangle $Q A-T r I$ and the Miquel triangle $Q A-T r 2$ are perspective wrt $Q A-P 3$.
- The isogonal conjugate of $Q A-P 3$ wrt the Miquel triangle is QA-P4.
- The involutary conjugate $Q A-T f 2$ of $Q A-P 3$ wrt the diagonal triangle is the point at infinity of $Q A-P 3 . Q A-$ P4.
- The fixed points of $Q A-T f 2$ are the vertices of the quadrangle.

Construction

The idea of the construction is, to find the fixed points of an isoconjugation wrt a reference triangle, knowing a pair of conjugated points. Here:
\ldots reference triangle $Q A-\operatorname{Tr} 1=X_{1} X_{2} X_{3}$,
\ldots conjugated points: $Q A-P 3=Y$ and point at infinity of $Q A-$ $P 3 . Q A-P 4=Z$.

Let Y_{i} be the intersection of $X_{i} Y$ and $X_{j} X_{k}$, ...let Z_{i} be the intersection of $X_{i} Z$ and $X_{j} X_{k}$,
\ldots let Q_{i} be a double point of the $X_{j} X_{k}$-line involution (see $Q A$ Tf1) wrt X_{j}, X_{k} and Y_{i}, Z_{i}.
... The lines $L_{i}=X_{i} Q_{i}$ intersect in a point P,
... which gives with its anticevians wrt $X_{1} X_{2} X_{3}$ the fixed points of the isoconjugation.

Eckart Schmidt
http://eckartschmidt.de
eckart_schmidt@t-online.de

