EQF-Note 2017-11-15

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures and Poly Geometry http://www.chrisvantienhoven.nl/

CSC-related 5L-Transformation III

The 5L-transformation Tf2 in QFG#2683 maps a line to a point, but there are two other lines with the same image. Here a construction of these further lines is given.

In *QFG#2683* several 5*L*-transformations are described:

- **Tf0** point \rightarrow circle: The 5 CSC-images of a point P wrt the 4L of a 5L are concyclic on the circle TfO(P).
- **Tf1** point \rightarrow point: Tf1(P) is the center of the circle Tf0(P) (see 5L-s-Tf1 in EPG).
- *Tf2 line* \rightarrow *point:* Radical axes for the 5 *CSC*-images of a line/circle have a common point (see *QFG*#780).
- *Tf3 point* \rightarrow *line: Tf3*(*P*) is the radical axis of *Tf0*(*P*) and *5Lo-Ci1* (see *QFG#790*).
- *Tf4 line* \rightarrow *point:* Radical axes for the *Tf0*-circles of the points of a line/circle have a common point (see *QFG#790*).

Tf3 and *Tf4* are inverse transformations. But wrt *Tf1* every point has two pre-images, which are partner wrt the transformation *Tf* in *QFG#2669*. *Tf2* has the curious property, that there are three lines with the same image point.

For a line L_x and its image point $Tf2(L_x)$ there are two other lines L_y , L_z with $Tf2(L_x) = Tf2(L_y) = Tf2(L_z)$.

Construction:

We start with a line L_x , ... its *Tf2*-point *P*, its *Tf4*-point *X* and the foci F_1, F_2 of the inscribed conic *5L-s-Co1* ... and construct the orthogonal hyperbola *Hy*, ... centered in *5L-s-P1*, ... through *P*, *X*, *F*₁, *F*₂. ... The intersections *Y* and *Z* of L_x and *Hy*

... give the lines $L_y = XZ$ and $L_z = XY$.

Properties:

- For points X, Y, Z with $L_x = YZ$, $L_y = ZX$, $L_z = XY$... and $Tf2(L_x) = Tf2(L_y) = Tf2(L_z)$ holds: $Tf4(L_x) = X$, $Tf4(L_y) = Y$, $Tf4(L_z) = Z$, $Tf3(X) = L_x$, $Tf3(Y) = L_y$, $Tf3(Z) = L_z$.
- The points X, Y, Z, F_1 , F_2 and $P = Tf2(L_{x,y,z})$ lie on an orthogonal hyperbola, centered in 5L-s-P1.

- The nine-point circle of *XYZ* bears *5L-s-P1*.
- The *Tf1*-images of *X*, *Y*, *Z* are collinear with $P = Tf2(L_{x,y,z})$ and the orthocenter X3 of XYZ.
- The radical axis R_z of the circles $Tf\theta(X)$ and $Tf\theta(Y)$ bears Z and is parallel to R_x and R_y ...
- The radical axis of *Tf0(X)* and *5L-s-Ci1* is *YZ*, ...

Eckart Schmidt http://eckartschmidt.de eckart_schmidt@t-online.de