EQF-Note 2017-11-19

Background for these notes is: Chris van Tienhoven: Encyclopedia of Quadri-Figures and Poly Geometry http://www.chrisvantienhoven.nl/

CSC-Circles for Points wrt a 5L

The CSC-images of a point wrt the 4L of a 5L are concyclic. These CSC-circles are special circles: For a given center there are two circles, which are CSCcircles. Here a construction is given.

Transformations

For a construction several transformations are used, already mentioned in earlier *QFG*-messages, up to now not in *EPG* (except Tfl = 5L-s-Tfl):

- **Tf0** point \rightarrow circle: The 5 CSC-images of a point P wrt the 4L of a 5L are concyclic on the circle TfO(P).
- **Tf1** point \rightarrow point: Tf1(P) is the center of the circle Tf0(P) (see 5L-s-Tf1 in EPG).
- *Tf2 line/circle* \rightarrow *point:* Radical axes for the 5 *CSC*-images of a line/circle have a common point (see *QFG*#780).
- *Tf3 point* \rightarrow *line: Tf3*(*P*) is the radical axis of *Tf0*(*P*) and *5Lo-Ci1* (see *QFG*#790).
- *Tf4 line/circle* \rightarrow *point:* Radical axes for the *Tf0*-circles of the points of a line/circle have a common point (see *QFG#790*).

Further a point *X*:

$$X = F_1 F_2^{\bullet} \cap F_1^{\bullet} F_2.$$

 F_1 and F_2 foci of the inscribed conic 5L-s-Co1, F_1° and F_2° inverses of F_1 and F_2 wrt 5L-o-Ci1.

Construction

point <i>M</i> :	Given center of the searched CSC-circles.
circle <i>Ci</i> ₁ :	The two CSC-circles, centered in the given point
	M are inverse wrt a circle Ci_1 round M with radius
	$\sqrt{M.F_1 imes M.F_2}$.
line <i>L</i> :	The <i>Tf4</i> -images of circles <i>Ci</i> round <i>M</i> give a line
	L, bearing point X.
circle <i>Ci</i> ₂ :	Circle round $N = Tf2(Ci_1)$ orthogonal intersecting
	the circle $CSC(Ci_1)$ wrt any $4L$ of the $5L$.
points S_1 , S_2 : Intersections of Ci_2 and L . $TfO(S_1)$ and $TfO(S_2)$ give	
	the searched CSC-circles.

Background for the construction is the property of *CSC*-circles, that their *Tf2*- and *Tf4*-image points coincide.

Eckart Schmidt <u>http://eckartschmidt.de</u> <u>eckart_schmidt@t-online.de</u>